ABSTRACT: Natural proteins such as bovine serum albumin (BSA) are readily extracted from biological fluids and widely used in various applications such as drug delivery and surface coatings. It is standard practice to dope BSA proteins with an amphipathic stabilizer, most commonly fatty acids, during purification steps to maintain BSA conformational properties. There have been extensive studies investigating how fatty acids and related amphiphiles affect solution-phase BSA conformational properties, while it is far less understood how amphipathic stabilizers might influence noncovalent BSA adsorption onto solid supports, which is practically relevant to form surface coatings. Herein, we systematically investigated the binding interactions between BSA proteins and different molar ratios of caprylic acid (CA), monocaprylin (MC), and methyl caprylate (ME) amphiphiles—all of which have 8-carbon-long, saturated hydrocarbon chains with distinct headgroups—and resulting effects on BSA adsorption behavior on silica surfaces. Our findings revealed that anionic CA had the greatest binding affinity to BSA, which translated into greater solution-phase conformational stability and reduced adsorption-related conformational changes along with relatively low packing densities in fabricated BSA adlayers. On the other hand, nonionic MC had moderate binding affinity to BSA and could stabilize BSA conformational properties in the solution and adsorbed states while also enabling BSA adlayers to form with higher packing densities. We discuss physicochemical factors that contribute to these performance differences, and our findings demonstrate how rational selection of amphiphile type and amount can enable control over BSA adlayer properties, which could lead to improved BSA protein-based surface coatings.

INTRODUCTION

The phenomenon of noncovalent protein adsorption at solid–liquid interfaces is closely linked with a wide range of medical and biotechnology applications, including implantable medical devices, biosensors, and drug-delivery systems.1−3 Mechanistically, the protein adsorption process is governed by a combination of protein–surface interactions and lateral protein–protein interactions between adsorbed proteins.4−8 Importantly, both protein–surface and protein–protein interactions can be modulated depending on key molecular properties of the adsorbing protein, which opens the door to controlling protein adsorption processes based on molecular design strategies in line with the nanoarchitectonics concept.

Toward this objective, a popular strategy involves tuning the thermodynamic stability of the folded protein structure in bulk solution—termed conformational stability—as a means to modulate protein adsorption behavior. For example, Karlsson et al. experimentally showed that certain synthetic mutants of the carbonic anhydrase II protein, which were engineered (via amino acid substitution) to have lower conformational stability, underwent more extensive surface-induced denaturation and exhibited greater adsorption irreversibility on various solid supports.9−11 The conformational stability of natural proteins can also be modulated by adjusting environmental conditions, such as temperature, solution pH, and solvent conditions, which in turn affect protein adsorption behavior. This latter approach has been applied to bovine serum albumin (BSA), which is a widely studied protein that is isolated from bovine plasma and commonly used as a reagent for blocking and surface passivation applications.12−17 For example, Park et al. reported that heat pretreatment converts BSA protein monomers into oligomers, which adsorb onto solid surfaces to a greater extent than monomers at room temperature due to distinct conformational properties and consequently exhibit superior surface passivation properties.13 It is also important to consider how the interactions of BSA with other types of molecules affect protein structure and function.

As part of processing methods to isolate BSA proteins from crude protein mixtures, fatty acids, most often caprylic acid (CA), are widely used as dopants to endow BSA proteins with greater stability during high-temperature extraction steps. Fatty
acids and related amphipathic molecules with hydrophilic headgroups and hydrophobic chains are known to bind to BSA proteins through hydrophobic, electrostatic, and hydrogen-bonding interactions.21−23 There have been extensive studies investigating how factors such as amphiphile chain length24−28 and headgroup properties29−31 affect the binding of amphipathic molecules to BSA proteins along with the extent of solution-phase conformational stability in response to chemical and thermal denaturants.29−31 On the other hand, it was only recently observed that fatty acid doping also significantly affects protein adsorption and resulting surface passivation performance.32 In particular, fatty acid-doped BSA proteins exhibit less adsorption uptake and adsorption-related denaturation on silica surfaces as well as reduced surface passivation performance, compared to fatty acid-free BSA proteins. These effects are related to (1) greater conformational stability and (2) more repulsive protein−protein interactions of fatty acid-doped BSA molecules, the latter of which originates from the anionic character of bound fatty acids and results in a lower surface coverage of adsorbed proteins. At the same time, there remains an outstanding need to more broadly understand how different molecular features of amphipathic molecules, including fatty acids and related compounds, affect BSA adsorption behavior.

Herein, we investigated how the binding interactions of CA fatty acid and its monoglyceride and methyl ester derivatives termed monocaprylin (MC) and methyl caprylate (ME), respectively, with BSA proteins affect BSA adsorption behavior on silica surfaces by utilizing a combination of biophysical and surface-sensitive measurement techniques. The overall experimental strategy is presented in Figure 1. All three compounds have an 8-carbon-long saturated hydrocarbon chain along with distinct headgroup properties. The anionic CA headgroup consists of a carboxylic acid functional group, while the nonionic MC headgroup is formed from the conjugation of a hydrophilic glycerol molecule to CA and the nonionic ME headgroup is formed by the addition of a hydrophobic methyl group to the carboxylic acid of CA. Particular attention was focused on scrutinizing how CA, MC, and ME affect solution-phase BSA conformational stability in the broader context of tracking protein adsorption uptake and kinetics along with related conformational changes in the adsorbed state.

Figure 1. Overview of experimental strategy. The binding interactions of BSA with different amphipathic molecules, namely, CA, MC, and ME, were quantitively characterized by fluorescence spectroscopy along with dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy measurements to evaluate solution-phase conformational stability. Quartz crystal microbalance-dissipation (QCM-D), localized surface plasmon resonance (LSPR), and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy experiments were conducted to determine how binding interactions with the tested amphipathic molecules affected BSA protein adsorption behavior in terms of adsorption uptake and kinetics along with related conformational changes.

MATERIALS AND METHODS

Reagents. Fatty acid-free BSA (A7030, lot no. SLBT4132), octanoic acid (caprylic acid, C2875), 1-monocaprylyl-rac-glycerol (monocaprylin, M2265), methyl octanoate (methyl caprylate, 260673), sodium dodecyl sulfate (SDS, L4390), sodium chloride (NaCl, 746398), and sodium hydroxide (S5881) were purchased from Sigma-Aldrich. Tris(hydroxymethyl)aminomethane (Tris, 0497) was purchased from Merck. Moh (Singapore), and hydrochloric acid (HCl, 100317) was purchased from Merck.

Sample Preparation. An aqueous buffer solution of 10 mM Tris, 150 mM NaCl, and pH 7.5 was prepared with Milli-Q-treated water (resistivity of >18.2 MΩ-cm at 25 °C) and filtered through a 0.2 μm polysulfone (PES) membrane filter (Thermo Fisher Scientific, S95-4520). BSA solutions were prepared by dissolving lyophilized BSA powder in the buffer solution and then filtering the BSA suspension through a syringe filter with 0.2 μm diameter pores (PN-4612; Pall Corporation). The molar concentrations of the BSA protein in aqueous buffer solution was determined by UV light absorbance measurements at 280 nm, and the molar extinction coefficient value of BSA was taken to be 43 824 M⁻¹ cm⁻¹. To prepare CA-doped BSA, CA was dissolved in protein-free Tris buffer, followed by NaOH titration, to make a 50 mM CA solution at pH 7.5. The CA solution was then added to appropriate amounts of BSA solution to yield CA-doped BSA samples with a CA/BSA molar ratio of 10:1 (CA 10) or 100:1 (CA 100). MC and ME solutions were made by dissolving appropriate amounts in equivalent buffer solution to make 20 mM MC or ME solutions, followed by heating to 70 °C for 30 min.
Figure 2. Evaluation of CA, MC, and ME binding interactions with BSA proteins. (A–C) Intrinsic fluorescence emission spectra of 10 μM BSA in the absence and presence of (A) CA, (B) MC, and (C) ME amphiphiles. (D) Stern–Volmer plots corresponding to the data in (A)–(C). Data are presented as mean ± standard deviation (sd). Linear fits and corresponding KSV values of CA, MC, and ME binding to BSA are presented for each data set. (E) Plot of log((F0 − F)/F) versus log[S]. Linear fits and the corresponding Ks values of CA and MC binding to BSA are presented for each data set.
Statistical Analysis. The tests were conducted using the GraphPad Prism (v8.0.1) software package from GraphPad Software. One-way and two-way analyses of variance (ANOVA) with the appropriate multiple comparisons test were conducted to compute multiplicity-adjusted P values to determine the statistical significance of measurement data as appropriate. All statistical analyses involved two-tailed tests. P < 0.05, P < 0.01, and P < 0.001 indicate the levels of statistical significance, and NS “not significant.”

RESULTS AND DISCUSSION

Binding Interaction Analysis. We first measured the binding affinities of CA, MC, and ME to solution-phase BSA proteins by steady-state fluorescence spectroscopy (Figure 2 and Table S1). Like how fatty acids can insert into hydrophobic pockets on the BSA protein surface, it is known that monoglycerides and fatty acid methyl esters can bind similarly to serum albumin proteins in some cases. We compared the levels of statistical significance for the interactions with BSA, followed by MC and then ME. Notably, CA exhibited different binding affinities to solution-phase BSA and thus ME was excluded from further analysis (Figure 2A–C). The excitation wavelength was 280 nm, and the maximum-intensity emission wavelength was 340 nm in all cases. At higher CA and MC concentrations, there was greater quenching, which resulted in a lower maximum intensity at the 340 nm wavelength, while ME had a negligible effect on the intensity value.

To analyze the measurement data, the Stern–Volmer (SV) equation was used

$$\frac{F_0}{F} = 1 + K_{SV}[S] = 1 + k_q r_0[S]$$

(1)

where F_0 and F are the experimentally determined maximum-intensity values of BSA alone and in the presence of CA, MC, or ME at different concentrations, K_{SV} is the SV quenching constant, $[S]$ is the concentration of amphiphile in the bulk solution, k_q is the bimolecular quenching rate constant, and r_0 is the average fluorescence lifetime of BSA alone. The SV data are plotted as F_0/F versus $[S]$ for BSA complexes with CA, MC, and ME and shown in Figure 2D. The K_{SV} values were 466, 243, and 16 M$^{-1}$ for CA, MC, and ME binding, respectively, which indicate that CA had the strongest binding interactions with BSA, followed by MC and then ME. Notably, the low K_{SV} value for ME indicates a nearly negligible binding interaction with BSA and thus ME was excluded from further binding analysis.

Taking into account that the value of r_0 for BSA is 6×10^{-9} s,27,42 the resulting k_q values for CA and MC are around 7.77 × 10$^{-10}$ and 4.10 × 10$^{-9}$ M$^{-1}$ s$^{-1}$, respectively, which are indicative of static quenching (see calculation details in the Supporting Information). Next, we determined the effective binding constant (K_b) values for CA and MC according to the following equation

$$\log \frac{F_0 - F}{F} = \log K_b + n \log[S]$$

(2)

where n is the number of different binding site types, and the corresponding log plot is presented in Figure 2E. The average K_b values were determined to be 390 and 210 M$^{-1}$ for the BSA complexes with CA and MC, respectively, while n was calculated to be 0.97 for both cases. The binding interaction data are summarized in Table S1. The results indicate that anionic CA has the strongest binding affinity with BSA proteins, followed by the polar and nonionic MC. By contrast, the nonionic ME, with the least polar methanol ester headgroup, had the lowest binding affinity to BSA. The calculated n value agrees well with previous works for CA binding1 and indicates that both amphiphiles bind to a single type of binding site, which consists of hydrophobic pockets on the BSA protein surface. In other words, each amphiphile displayed one mode of binding to BSA. Collectively, the data support that the carboxylic acid headgroup of CA has stronger interactions with BSA, likely through electrostatic interactions and/or hydrogen bonding, while the glycerol ester headgroup of MC forms more extensive hydrogen bonds with BSA compared to the methanol ester headgroup of ME. As such, these findings demonstrate that headgroup polarity strongly influences the binding interaction of amphiphilic molecules with BSA proteins even when the different amphiphiles have identical hydrocarbon chains.

Solution-Phase Conformational Stability. We proceeded to compare the effects of CA, MC, and ME doping (10:1 and 100:1 molar ratios of amphiphile/BSA) on the solution-phase conformational stability of BSA by conducting temperature-dependent DLS and CD spectroscopy experiments. A defatted BSA sample without CA, MC, or ME was also tested as a control.

In the DLS measurements, the onset temperature of aggregation was determined by recording the lowest temperature at which a marked increase in the mean hydrodynamic diameter of BSA protein samples occurred. BSA samples with increased conformational stability tend to have a higher onset temperature of aggregation.32 From 25 to 55 °C, all BSA samples had similar mean hydrodynamic diameters of ~9 nm (Figures 3A and S1), which is around the expected size of BSA monomers.12,13,43 At 60 °C, the diameters of defatted BSA and ME samples increased to ~11 nm, indicating the onset of aggregation. MC 10 and MC 100 samples started aggregating at 65 °C and reached ~16 and ~13 nm in diameter, respectively, while CA 10 samples started aggregating at 70 °C and reached ~15 nm in diameter. Interestingly, at 70 °C, MC 100 aggregated to a larger size than defatted BSA, MC 10, and both ME samples and was about twice the size of these other samples at 75 °C. By contrast, the CA 100:1 sample did not display any evidence of protein aggregation across the tested temperature range. Together, these data indicate that CA doping endows BSA proteins with the highest conformational and/or colloidal stability, followed by MC, whereas ME was essentially ineffective and ME-doped samples behaved almost equivalently to the defatted BSA control.

The data also revealed that CA and MC amphiphiles more effectively decreased the onset temperature of aggregation of BSA proteins with higher bulk concentrations of amphiphile, which would maximize binding site occupancy. Time-dependent size measurements at a constant temperature of 60 °C further confirmed these trends (Figure S2). Notably, MC 100 samples in time-dependent experiments did not aggregate as extensively as in temperature-dependent experiments, indicating that this behavior is only triggered at higher temperatures (>65 °C) upon more extensive thermal unfolding.

To corroborate the DLS data, CD spectroscopy measurements were conducted to monitor temperature-induced unfolding of each BSA sample with respect to the loss of α-helical secondary structure at higher temperatures. At 25 °C, all BSA samples had similar degrees of α-helicity with an average of ~62%, and the percentage value decreased with increasing temperature due to thermally induced protein
higher degree of α-helicity with a percentage value around 46.8%, followed by the ME samples with 44.3 and 44.2 Hz, respectively. Together, these data support that MC 100 has greater conformational stability in the solution phase was greater at higher bulk amphiphile concentrations in general.

Real-Time Adsorption Behavior. Next, we investigated the effect of CA, MC, and ME on BSA protein adsorption onto a hydrophilic silica surface by conducting quartz crystal microbalance-dissipation (QCM-D) experiments. The isoelectric point (IEP) of silica is around 3.9,46 while the IEP of BSA protein is around 5.1.47 As such, in the pH 7.5 buffer solution, both the silica surface and BSA protein surface are expected to have net negative charges and hence possibly some degree of electrostatic repulsion between them. Nevertheless, BSA proteins can still adsorb onto the silica surface because positively charged regions on the BSA molecular surface can contact the silica surface, yielding attractive electrostatic interactions while hydrogen-bonding and van der Waals interactions can also influence BSA adsorption.48 The amount and charge of bound amphiphiles are also expected to influence the extent of protein adsorption.

Experimentally, the QCM-D frequency (∆F) and energy dissipation (∆D) shifts correspond to the hydrodynamically coupled mass and viscoelastic properties of adsorbed BSA protein molecules, respectively,43,49,50 and were recorded as a function of time. The time-resolved ∆F shift data indicated monotonic adsorption of BSA proteins in all cases, and most adsorbed proteins remained irreversibly attached, as indicated by a subsequent buffer washing step without protein (Figure 4A). The ∆F shift at adsorption saturation (denoted as |∆F_{max}|) was analyzed for the different BSA samples, and a larger |∆F_{max}| indicates greater adsorption uptake (Figure 4B).

The adsorption of defatted BSA proteins yielded an average |∆F_{max}| value of 45.5 Hz, while CA 10 and CA 100 samples tended to have smaller average |∆F_{max}| values of 44.1 and 39.9 Hz, respectively. By contrast, MC 10 and MC 100 had average |∆F_{max}| values around 45.5 and 47.1 Hz, respectively, whereas the ME 10 and ME 100 samples had average |∆F_{max}| values of 44.3 and 44.2 Hz, respectively. Together, these data support that increasing amounts of CA doping tended to decrease BSA adsorption uptake, while MC and ME doping had nearly negligible effects.

The time-resolved ∆D shift mirrored the kinetic profiles observed in the ∆F shift data, and we further analyzed the |∆F_{max}|/|∆D_{max}| ratio, whereby a larger ratio indicates a more tightly coupled BSA adlayer and vice versa (Figure 4C,D). Accordingly, it was observed that defatted BSA had an average |∆F_{max}|/|∆D_{max}| value of 12.2 Hz × 10^{6}, while CA 10 and CA unfolding (Figures 3B and S3).13,45 While reversible protein unfolding occurs with relatively small temperature increases, irreversible protein unfolding occurs above the onset temperature of aggregation in the range of 60 °C or higher depending on the sample conditions. Thus, we focused on comparing the degree of α-helicity at 65 °C to scrutinize differences in conformational stabilities between the various amphiphile-doped BSA samples. At 65 °C, defatted BSA had the lowest degree of α-helicity with a percentage value around 46.8%, followed by the ME samples with ~47.7%, and then MC 10 and MC 100 with around 47.9 and 48.9%, respectively. On the other hand, the CA 10 and CA 100 samples maintained a higher degree of α-helicity, with percentage values around 51.9 and 53.5%, respectively. This trend agrees with the DLS data and supports that CA is most effective at increasing BSA conformational stability, followed by MC and then ME.

Upon further increasing the temperature to 70 °C, the CA 10 and CA 100 samples had α-helical values of 47.7 and 51.9%, respectively, while the degree of α-helicity for MC 100 had decreased to 42.1% and all other BSA samples had values around ~41%. Likewise, at 75 °C, the CA 100 sample had 49.8% α-helicity, while all other samples had similar degrees of α-helicity around ~37%. Together with the DLS data, these results support that MC 100 has greater conformational stability but lower colloidal stability than defatted BSA, as indicated by its higher onset temperature of aggregation and formation of larger protein aggregates upon sufficiently extensive thermal unfolding.

Additional ionic-strength-dependent DLS experiments further indicated that the amphiphile headgroup—BSA protein interactions were dominated by polar interactions such as hydrogen bonding rather than electrostatic forces (see the Supporting Information and Figure S4). Collectively, the DLS and CD spectroscopy measurements both showed that the stabilizing effectiveness of the amphiphiles was in the order of CA > MC > ME and that the extent of amphiphile-induced protein stability in the solution phase was greater at higher bulk amphiphile concentrations in general.
100 samples had smaller average $|\Delta F_{\text{max}}/\Delta D_{\text{max}}|$ values around 11.2 and 9.1 Hz × 106, respectively. On the other hand, MC 10 and MC 100 samples had average $|\Delta F_{\text{max}}/\Delta D_{\text{max}}|$ values of 12.2 and 10.9 Hz × 106, respectively, and ME 10 and ME 100 samples had average $|\Delta F_{\text{max}}/\Delta D_{\text{max}}|$ values of 13.6 and 14.8 Hz × 106, respectively. Together, these results show that CA addition tended to reduce BSA adsorption uptake. Notably, the CA 100 sample had the lowest adsorption uptake and formed the least rigid protein adlayer, which support that high levels of CA doping endow the BSA proteins with greater conformational stability. By contrast, the defatted BSA and MC 10 samples had similar levels of adsorption uptake and adlayer rigidity, while the MC 10 and ME 100 sample tended to result in greater adsorption uptake and less adlayer rigidity. In addition, the ME 10 and ME 100 samples had similar adsorption properties to the defatted BSA control sample. As such, the overall findings indicate that both the type and amount of amphiphile influence the BSA adlayer properties.

In addition to QCM-D measurements, we also conducted localized surface plasmon resonance (LSPR) sensing experiments as a complementary approach to monitor the adsorption of BSA proteins onto silica-coated gold nanodisk arrays. While QCM-D measurements are sensitive to the mass of adsorbed protein molecules and hydrodynamically coupled solvent molecules, i.e., “wet mass”, LSPR measurements are sensitive only to the “dry mass” corresponding to adsorbed protein molecules.51 Furthermore, the LSPR measurement approach has a shorter penetration depth of ~20 nm or less compared to 100–300 nm for the QCM-D technique.51 Hence, protein adsorption events would occur within a larger fraction of the LSPR-tracked probing volume, which can potentially yield higher surface sensitivity to subtle variations in adsorption behavior and adsorption-related conformational properties. As presented in Figure 4E, BSA protein adsorption was monitored in real time by tracking wavelength shifts ($\Delta \lambda$) of the LSPR extinction peak position, which arise due to the adsorption and spreading of BSA proteins on the sensor surface.55 Larger $\Delta \lambda$ shifts correspond to greater adsorption uptake, and monotonic $\Delta \lambda$ shift increases were observed in all cases. Most attached BSA molecules were irreversibly adsorbed, as indicated by a buffer washing step.

To compare the different BSA samples, the $\Delta \lambda$ shifts corresponding to adsorption at saturation ($\Delta \lambda_{\text{max}}$) were recorded (Figure 4F). For defatted BSA, the average $\Delta \lambda_{\text{max}}$ shift was around 1.72 nm, while the CA 10 and CA 100 samples had average $\Delta \lambda_{\text{max}}$ shifts around 1.61 and 1.25 nm, respectively. On the other hand, the MC 10 and MC 100 samples had average $\Delta \lambda_{\text{max}}$ shifts around 1.76 and 1.96 nm, respectively, while the ME 10 and ME 100 samples had average $\Delta \lambda_{\text{max}}$ shifts around 1.83 and 1.91 nm, respectively. Collectively, the results agree well with the trends observed in the QCM-D measurements, while the LSPR measurement signal proved more sensitive to distinguish between the adsorption profiles of different BSA samples. Overall, the data indicate that CA addition reduced BSA adsorption uptake, MC addition increased adsorption uptake when added at high concentrations, and ME addition tended to only slightly increase adsorption uptake. Furthermore, taking into account that there is negligible binding between the ME amphiphile and BSA protein, the slight increase in adsorption uptake for ME-doped BSA samples in the QCM-D and LSPR experiments suggests that free ME can adsorb onto the silica surface.52

Adsorption-Related Protein Conformational Changes. To further analyze the adsorption behavior of the different BSA samples, we evaluated the extent of adsorption-related protein conformational changes by calculating the maximum rate of change in the LSPR $\Delta \lambda$ shift during the initial stage of adsorption ($d\Delta \lambda/dt_{\text{max}}$) (Figures 5A and SS).55 A larger ($d\Delta \lambda/dt_{\text{max}}$) value indicates more extensive adsorption-related conformational changes, especially protein spreading, whereby the adsorbed protein mass is closer, on average, to the sensor surface. The average ($d\Delta \lambda/dt_{\text{max}}$) value for defatted BSA samples was around 0.74 nm/min, while the...
MC 100 samples had average $\Delta \alpha$ values of 0.54 and 0.39 nm/min, respectively. Likewise, the MC 10 and MC 100 samples had average $\Delta \alpha$ values of 0.52 nm/min, respectively, whereas the ME 10 and ME 100 samples exhibited the greatest solution-phase conformational stability. In this respect, CA was more effective than MC in maintaining protein conformational stability. On the other hand, the ME 10 and ME 100 samples underwent protein spreading in the adsorbed state to similar extents to the defatted BSA control.

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy experiments were also performed to quantitatively determine the fractional percentage of α-helical secondary structure for the BSA protein samples in solution and in the adsorbed state (Figures S5 and S6). In solution, all BSA samples had similar degrees of α-helicity, with values around ~62.8%. By contrast, in the adsorbed state, defatted BSA samples underwent partial unfolding and the percentage of α-helical character decreased to around 45.1%. In marked contrast, the CA 10, CA 100, MC 10, and MC 100 samples maintained α-helical character to a greater extent, and the corresponding values in the adsorbed state were 52.4, 55.0, 48.6, and 52.7%. This trend occurred because the carboxylic acid functional groups of CA created more repulsive interactions between CA-doped BSA proteins, which led to CA-doped BSA protein adlayers with relatively lower packing densities.

Schematic Overview of Amphiphile Effects. Figure 6 presents a schematic illustration that summarizes the main experimental findings and describes how CA, MC, and ME amphiphiles affect BSA protein adsorption behavior. The CA and MC stabilize BSA to reduce the extent of adsorption-related conformational changes. Furthermore, the ATR-FTIR spectroscopy results also show that CA confers greater conformational stability on BSA proteins than MC. On the other hand, adsorption of the ME 10 and ME 100 samples caused similar losses in α-helicity that mirrored the defatted BSA case, with average α-helicity values of 46.0 and 46.4%, respectively, in the adsorbed state. As such, the data indicate that ME doping does not endow BSA proteins with greater conformational stability.

Because ME had the least effect on BSA adsorption, which is consistent with the fluorescence spectroscopy data that indicated a weak binding interaction between BSA and ME. As such, ME-doped BSA samples had similar solution-phase conformational stability and adsorption behavior to the defatted BSA control sample. On the other hand, CA had the highest binding affinity to BSA, and CA-doped BSA samples exhibited the greatest solution-phase conformational stability. Moreover, while less surface-induced denaturation typically leads to greater total adsorption uptake due to a smaller contact area per molecule, CA-doped BSA proteins also had the lowest total adsorption uptake and consequently lowest packing density of adsorbed protein molecules. This trend occurred because the carboxylic acid functional groups of CA are negatively charged and thus CA-doped BSA proteins have intermolecular repulsion, which limits the surface coverage of adsorbed protein molecules.

Between these two cases, we also observed interesting results with the MC amphiphile, whereby it moderately enhanced solution-phase protein conformational stability and led to the formation of well-packed protein adlayers. MC is nonionic, so there was appreciably less intermolecular repulsion between MC-doped BSA proteins, which enabled higher total adsorption uptake due to greater packing density within the BSA adlayer. While CA had notable effects even at a 10:1 CA/BSA molar ratio, the effects of MC on BSA adsorption properties were most clearly observed at a 100:1 MC/BSA molar ratio because MC has lower binding affinity to BSA than CA. Together, these data show that amphiphile doping can affect BSA adsorption properties by two main effects, including enhancing conformational stability and modulating protein–protein interactions in the adsorbed state. Rational selection of the amphiphile type and amount used to stabilize BSA proteins can therefore enable control over BSA adlayer properties in terms of adsorption-related denaturation and packing density.
CONCLUSIONS

In this study, we have employed a wide range of biophysical and surface-sensitive measurement techniques to characterize the effects of CA, MC, and ME amphiphiles on BSA conformational stability and adsorption behavior on silica surfaces. While each amphiphile had an 8-carbon-long, saturated hydrocarbon chain, we observed marked differences in the binding affinity of each amphiphile to BSA proteins, which indicates that the amphiphile headgroup also plays an important role in binding interactions. Both CA and MC demonstrated binding to BSA proteins and improved solution-phase conformational stability along with reducing surface-induced denaturation in the adsorbed state. Due to differences in binding affinity, CA was generally effective at both 10:1 and 100:1 amphiphile/BSA molar ratios, while MC was more effective at the 100:1 molar ratio. Notably, the anionic character of CA fatty acids led to reduced packing densities within CA-doped BSA protein adlayers, whereas the nonionic character of MC monoglycerides enabled higher packing densities within MC-doped BSA protein adlayers. These findings also agree well with the temperature-dependent protein aggregation data, indicating that CA modulates both conformational and colloidal stabilities, whereas MC mainly influences conformational stability. While CA is typically used to dope BSA proteins as part of purification processes, our findings point to the potential significance of MC to create purified BSA proteins with more promising properties for BSA adlayer-based surface passivation applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.langmuir.0c02048.

CD and ATR-FTIR spectroscopy methods, fluorescence spectroscopy data (Table S1), DLS data (Figures S1 and S2), CD data (Figure S3), intensity-strength-dependent DLS data (Figure S4), LSPR data (Figure S5), and ATR-FTIR spectroscopy data (Figure S6), and the determination of static quenching and on amphiphile headgroup—BSA interactions (PDF)

AUTHOR INFORMATION

Corresponding Authors

Joshua A. Jackman — School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; orcid.org/0000-0002-1800-8102; Email: jjackman@skku.edu

Nam-Joon Cho — School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798; orcid.org/0000-0002-8692-8955; Email: njcho@ntu.edu.sg

Authors

Gamaliel Junren Ma — School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798; orcid.org/0000-0002-6740-1031

Abdul Rahim Ferhan — School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798; orcid.org/0000-0003-3238-3125

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.langmuir.0c02048

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Singapore through a Competitive Research Programme grant (NRF-CRP10-2012-07) and a Proof-of-Concept grant (NRF2015NRF-POC0001-19) and by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (no. 2020R1C1C1004385).

REFERENCES

(16) Tan, J. Y. B.; Yoon, B. K.; Ma, G. J.; Sun, T. N.; Cho, N.-J.; Jackman, J. A. Unraveling how ethanol-induced conformational changes affect BSA protein adsorption onto silica surfaces. Langmuir 2020, 36, 9215.

(17) Ma, G. J.; Ferhan, A. R.; Sun, T. N.; Jackman, J. A.; Cho, N.-J. Understanding how natural sequence variation in serum albumin

https://dx.doi.org/10.1021/acs.langmuir.0c02048
Langmuir 2020, 36, 10606−10614

