Supporting Information

for Small, DOI: 10.1002/smll.201403638

Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides

Joshua A. Jackman, Rathi Saravanan, Yibang Zhang, Seyed R. Tabaei, and Nam-Joon Cho*
Supporting Information

Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay Establishes Design Guidelines for Antiviral Peptides

Joshua A. Jackman, Rathi Saravanan, Yibang Zhang, Seyed R. Tabaei, and Nam-Joon Cho*

Supporting Figure 1. Intensity-Weighted Vesicle Size Distribution of Extruded Lipid Vesicles Measured by Dynamic Light Scattering. After freeze-thaw pretreatment, vesicles were extruded through (a) 30, (b) 50, (c) 100, (d) 200, (e) 400, or (f) 1000 nm pores.
Supporting Figure 2. Intrinsic Tryptophan Fluorescence Spectroscopy Measurements as a Function of Lipid Concentration for AH Peptide. A blueshift in the emission maximum was observed with increasing lipid concentration. The AH peptide concentration was fixed at 5 µM.
Supporting Figure 3. Intrinsic Tryptophan Fluorescence Spectroscopy Measurements as a Function of Lipid Concentration for C5A Peptide. A blueshift in the emission maximum was observed with increasing lipid concentration. The C5A peptide concentration was fixed at 5 µM.
Supporting Figure 4. Stability of the TIRF Measurement Signals in the Absence of Membrane-Active Compounds. Time-resolved shifts in fluorescence intensities of the calcein and rhodamine channels for a representative single vesicle without peptide addition are presented for an experiment conducted under identical conditions.